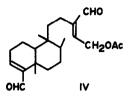

Tetrahedron Letters No.22, pp. 2685-2686, 1968. Pergamon Press. Printed in Great Britain.

PARTIAL SYNTHESIS OF KOLAVELOOL AND HARDWICKIIC ACID* R. Misra and Sukh Dev National Chemical Laboratory, Poona 8 (India)

(Received in UK 9 February 1968; accepted for publication 4 March 1968)

In continuation of our earlier work^{1,2} on the diterpenoids from the oleo-resin of <u>Hardwickia pinnata</u>, we report on the partial synthesis of kolavelool (II) and hardwickiic acid (III) from what is likely to be their immediate precursor in nature, <u>viz</u>. kolavenol (I).

Kolavelool


The occurrence of a tertiary allylic isomer of kolavenol in the oleo-resin of <u>Hardwickia pinnata</u> has already been reported¹. The partial synthesis to be described, besides confirming its structure, also settles its absolute stereochemistry at all centres except at C_{13} .

Kolavenol (I) on MnO₂ oxidation (pet. ether) furnished the corresponding aldehyde ($\lambda_{\max}^{\text{EtOH}}$ 238 mL, \in 13230), which on epoxidation (H₂O₂, NaOH-MeOH, O^O) furnished the 13,14-epoxy-kolavenal. Treatment of the latter compound with hydrazine hydrate⁴ and AcOH at 0-15^o furnished a complex product, from which the chief component (n_D^{30} 1.5130, [\propto] $_D^{24}$ -40.4^o in CHCl₃) could be isolated by preparative layer chromatography and identified (IR,FMR) as the naturally occurring allylic isomer of kolavenol. We have named this compound kolavelool* (cf.geraniol-linalool).

*Presented at the IUFAC, 4th International Symposium on the Chemistry of Natural Froducts, Stockholm (1966). ./e nave been prompted to report on our findings in view of a recent publication by King and Rodrigo³.

Hardwickiic acid

Kolavenyl acetate $(n_D^{30} 1.5011, [x]_D^{29} -45.7^{\circ}$ in CHCl₃) on treatment with SeO₂ (2.2 mole equiv.) in AcOH at reflux gave a product, in which the expected IV predominated. The crude product was taken up in MeOH and shaken with Amberlyst-15⁵ (48 hr)

to give a material, TLC of which showed two furan-containing products (spraying with Ehrlich reagent⁶) which were separated (column chromatography) and the major one (higher R_r) identified (IR, TLC, GLC) as methyl hardwickiate*.

*In this reaction we had anticipated only furan ring-closure (ester exchange, followed by hemi-acetal formation and dehydration to a furan) and the oxidation of C_4 -aldehyde function was totally unexpected. In an experiment in which any oxygen had been scrupulously avoided (O_2 -free N₂ and de-oxygenated MeOH), conversion to the ester again occurred.

REFERENCES

- 1 R. Misra, R.C. Pandey and Sukh Dev, <u>Tetrahedron Letters</u> 3751 (1964).
- 2 Absolute stereochemistry of hardwickiic acid and its congeners: R. Misra, R.C. Pandey and Sukh Dev, <u>Tetrahedron Letters</u> 2681 (1968).
- 3 T.J. King and S. Rodrigo, Chem. Comm. 575 (1967).
- 4 F.S. Wharton and D.H. Bohlen, J. Org. Chem. 26, 3615 (1961); E. Klein and G. Ohloff, <u>Tetrahedron</u> 19, 1091 (1963).
- 5 Product of Rohm and Haas Co., USA.
- 6 T. Reichstein, Helv. Chim. Acta 15, 1110 (1932).